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SUMMARY 

The present paper reports on a modified pressure implicit predictor-corrector type scheme for solving the 
flow governing equations, in which a consistent formulation is combined with a multi-grid solver for the 
pressure correction. In addition a parabolic sublayer (PSL) approach for the treatment of the flow in the 
vicinity of solid walls is critically evaluated in terms of accuracy and computational efficiency. The lid-driven 
cavity flow is chosen as the test case and results are presented for Reynolds numbers ranging from 100 to 
1000. Predictions with the proposed scheme indicate substantial computational savings and fairly good 
agreement when compared with previous work. The PSL approach reduces the computing time, but with 
increasing Reynolds numbers the accuracy of the solutions tends to deteriorate. 
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INTRODUCTION 

The numerical study of turbulent or high Reynolds number laminar flows requires a special 
treatment in the near-wall region. Typically, mesh refinement is used, but this approach tends 
to slow down convergence rates quite dramatically. For this reason, as an alternative in turbulent 
flows, wall functions are employed. These functions, however, are in most cases simple formulae 
based on experimental data for parallel flows with dubious applicability to recirculating flows. 
Two recent papers'.' examine this particular problem and they propose that the near-wall region 
flow be treated as a parabolic syblayer (PSL) with constant pressure across it. This approach 
is of some merit; however, concern has been expressed on the suitability of the PSL for regions 
in the vicinity of a stagnation point, where large variations of pressure normal to the wall may 
occur. 

This work investigates the validity of the PSL approach for the lid-driven cavity flow, since 
strong recirculating eddies are present in such a configuration. Concurrently an efficient numerical 
scheme based on the SIMPLEC algorithm3 incorporating a fast multi-grid numerical solver? 
is discussed and analysed. Results with and without the PSL approach are compared to each 
other and with work of previous authors for different Reynolds numbers. 

MODEL PROBLEM 

The fluid motion generated in a square cavity by the uniform translation of the upper surface 
of the cavity is a classic example of recirculating flow. Cavity flows have attracted considerable 
attention in recent years,536 owing to their many practical implications. From a purely 
computational viewpoint, the cavity flow is an ideal prototype non-linear problem which is 
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Figure 1. Cavity problem, definition 

readily posed for numerical solution. Its geometric simplicity (Figure 1 ), and comparatively minor 
singularities make it very attractive as a test case for new numerical techniques, and as a 
benchmark solution to evaluate competing schemes using different approaches for problem 
formulation, discretization and computational procedure. 

The two-dimensional, steady, laminar motion of an incompressible Newtonian fluid is 
considered. Steady-state conditions are assumed for the flow, but the numerical solution is 
obtained through a quasi-transient procedure starting from rest. 

The non-dimensional flow governing equations in Cartesian-tensorial notation are: 

Conservation of momentum 

aui d ( U . 2 4 . )  a ( 1 a u i )  aP 
-+A=- -- -- i =  1,2; j =  1,2. 
at axj axj Redxj axi’ 

Conservation of mass 

aui 
axi -=O, i =  1,2. 

The Reynolds number ( R e )  in equation (1) is based on the velocity of the upper moving boundary. 

NUMERICAL METHOD 

Discretization procedure 

The conservation equations are discretized by an averaging procedure over small control domains 
surrounding nodal points. A staggered grid structure’ is adopted, in which the pressure is defined 
in the centre of the control volume, and velocity components are located at the centres of the 
contro! volume faces (Figure 2). This arrangement has the convenient feature that the velocity 
components are stored at just the points at which they are required for the calculation of their 
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Figure 2. Staggered control volume arrangements 

advective contribution, and the pressure gradients in the momentum equations can be represented 
by central differences without inducing non-physical oscillations in the pressure distribution. 

The convection-diffusion flux terms are approximated by a hybrid upwind/central discretiza- 
tion scheme.8 This formulation, based on numerical experiments reported elsewhere,' proved to 
be a reasonable compromise between accuracy and computational effort. 

Underrelaxation, E-  factor formulation 

for the general variable Q, as 
Following the generalized formulation of Patankar," the discretized equations are written 

a,@,, = a,@,, +a,@,, + + as@,, + b. (3) 
This equation is formally presented as linear, but in fact the coefficients are functions of 0. To 

account for the inter-equation linkages and non-linearities, repeated cycles ('solutions') of the 
set of discretization equations similar to equation (3) are performed with the coefficients 'frozen' 
for each cycle. The cycle-by-cycle change of the coefficients may resu!: in large changes of the 
@values, leading eventually to slow convergence or even divergence. To moderate the changes in 
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consecutive 'solutions' for Q,, and thereby to improve convergence, underrelaxation can be 
introduced into equation (3) as follows: 

where Q,: is the value of QP from the previous cycle, and a is the underrelaxation factor. 

be rewritten as 
Raithby and Schneider" introduced the E-factor into the discretized equation (4), which can 

The primary reason for transforming equation (4) into equation (5) is that E lends itself to 
direct physical interpretation. Equation (5) is precisely the equation that results when the transient 
term is retained in equation (l), so that the solution of equation (5) advances Q, through a time 
step At which is proportional to the maximum allowable time step At* for an explicit formulation, 
i.e. 

PA V At = EAt*, where At* = -. 
UP 

With a constant E-factor, the value of At* will change from one control volume to the next, 
and Q, will be advanced non-uniformly in time across the grid. This skewed transient is desirable 
as a means of accelerating Values of E in the range of 2 to 10 are commonly 
used.3.1 1-13 

The SIMPLEC algorithm 

equations are linked to the continuity equation by the pressure correction equation. 

the velocity component in the x,-direction, u l ,  as follows: 

The SIMPLEC algorithm3 is a predictor-corrector type scheme, in which the momentum 

To illustrate the numerical procedure, a brief outline of the computational steps is given for 

1. Determination of the velocity uT using a tentative value for pressure (P*) in the x,-direction 
momentum equation: 

aeu:===Can,u,,,+(Pp*--PE*)Ae+be, (6)  
where A ,  is the area of the domain on which the pressure difference is applied, and 

SeAV)( 1 + i). (7) 

2. Solution of the pressure correction (P ' )  equation: 

= 1 %bPhb + bP, ( 8 )  

(9) 

(10) 

where bp represents a mass imbalance term, given by 

'P = (PU? A ) ,  - (PUT A l e  + (pug A),  - ( P U T  A ) ,  . 
3. Correction of the velocity field to satisfy continuity: 

u 1 = uT, 4 (G - PL)? 
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where 

Ae 
a e  - 1 a n b ’  

d ,  = 

P = P* +‘PI. 
4. Updating of the pressure field: 

At this stage convergence criteria are checked, and if they are satisfied the calculation is 
stopped; otherwise the computational procedure is repeated from step 1, with P taking the place 
of P * .  

The measure of convergence of the solution is given by equation (9). When b, is a vanishingly 
small value < for all control domains of the finest mesh, and the velocity field 
remains practically the same from cycle to cycle, the iterative process is stopped. 

Boundary conditions 

In order to solve the system of the discretized momentum equations and the pressure correction 
equation, appropriate boundary conditions must be imposed. The boundaries of the flow domain 
are taken as non-slip and impermeable; consequently the velocity components at the walls are 
zero, except for the dimensionless tangential component of the velocity at the moving wall, which 
takes the value of 1 (Figure 1). Owing to the staggered grid arrangement employed, not all the 
variables have grid points on all the boundaries; for example, there is no vertical velocity node 
on a vertical wall, nor a horizontal velocity node on a horizontal wall. In such cases the boundary 
conditions are imposed by extrapolating the boundary value of the variable to a fictitious point 
that lies outside the solution domain. 

Since the normal velocity components are prescribed at all boundaries, the flow rates across 
the boundary faces are not expressed in terms of uT and u:, but in terms of the actual velocities 
u 1  and u2.  Then, no velocity or pressure corrections are required for these faces; therefore, their 
corresponding coefficients are set to zero in the pressure correction equation. This is identical 
to prescribing a zero gradient of P’ on each of the boundaries. 

Solution of equations 

Owing to the non-linear nature of the problem, the discretized equations are solved by the 
use of iterative methods. 

The solution of the momentum equations represents only a small share of the total cost of 
solving a fluid flow problem. Since the associated coefficients are only tentative and they change 
from cycle to cycle, it is wasteful to drive the momentum equations to tight convergence. For 
the cases examined, adequate convergence is obtained using 5-10 applications of a line-by-line 
relaxation technique sweeping in the direction of the top moving wall. 

The solution of the pressure correction equation (8), can represent as much as 80 per cent 
of the total computational cost of solving the fluid flow p r ~ b l e m . ~  This equation poses a 
considerable challenge to most of conventional iterative schemes, owing to its strong ellipticity 
associated with the high anisotropy of the coefficients and the Neumann boundary conditions. 
These difficulties may be overcome with the use of a multi-grid t e~hn ique .~  The multi-grid 
approach implies the dynamic interaction of the numerical solution over grids of different sizes 
(levels). The motivation behind this is that common iterative techniques eliminate the high 
frequency components of the error within the first few iterations, leaving the low frequency error 
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components almost unchanged, resulting in a slow convergence rate. By employing several grids 
of different size, the low frequency error components are rapidly annihilated on coarser grids 
where the computational cost is relatively low. This eventually leads to an acceleration of the 
overall convergence rate. 

There are many types of multi-grid cycles and algorithms which can be applied to a broad 
range of linear and non-linear  problem^.^.'^ In this particular study, a cycling-accommodative- 
correction multi-grid method is employed, which is suitable for linear or artificially linearized 
(frozen coefficients) problems. The fine-coarse grid arrangement is such that the coarse grid 
points do not coincide with the fine grid points. An example of such an arrangement employing 
only two grid levels is shown in Figure 3. 

The multi-grid technique may be outlined by considering a series of grids, Go, G I , .  . . , G,, . . . , G,, 
with corresponding mesh sizes h,  > h ,  > . . . h , . . .  > h,, all approximating the same domain D. 
The pressure correction equation (8) for each mesh level k may be represented by 

Lk 1 > x2) = Bk(x 1 9 x2 )? (xl > x2 )ED (13) 
and associated boundary conditions. The term L, represents a discrete difference operator, 
containing the coefficients of the pressure correction equation (up, a,, uN,  uE,  as). It should be 
noted that these coefficients are not constant, but change from point to point within the solution 
domain, and from cycle to cycle within the computational procedure. Let Pc be the evolving 
solution to equation (1 3). Then the multi-grid method uses the fact that the solution on the next 
coarser grid G,- , can be improved if the error E,  = P ;  - P; and the residual R ,  = B, - L,P; 
are smooth (low frequencies are dominant), which may be achieved in a few sweeps of a suitable 
relaxation technique. 

An alternative direction line relaxation technique is employed, since it was found to be very 

x f i n e  g r i d  p o i n t s  

8 c o a r s e  g r i d  p o i n t s  

Figure 3. Two cell-centred grids, in which coarse grid unknowns are not a subset of line grid unknowns 
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efficient for problems involving anisotropic coefficients. l S  Using the correction multi-grid method, 
one approximates the residual equation 

LkEk = Rk (On Gk) (14) 

where the restriction operator r i p '  defines the way in which the residuals are transferred from 
Gk to Gk- 1.  The restriction procedure, as well as the transfer of the coefficients of the pressure 
correction equation from the fine to the coarse levels are achieved by linear interpolation. 

If Ek- l  is the exact solution of equation (15), P;  may be corrected by 

where the prolongation operator P i -  stands for a bilinear interpolation procedure to transfer 
the corrections from Gk- to Gk. 

This process is continued iteratively, after smoothing out the high frequencies on P; that 
are introduced by prolongation. Instead of solving equation (1 5) exactly, one uses still coarser 
grids to obtain an approximate solution to the residual equation, and the full procedure is 
repeated on the coarser grids. 

PSL procedure 

The parabolic sublayer (PSL) approach is used to resolve the thin boundary layers along 
the vertical walls of the cavity. Within the sublayer, only the u,-momentum equation is solved, 
as the pressure gradient across the layer is assumed to be zero, and the u 1  velocity components 
are obtained from continuity. 

The SIMPLEC procedure is slightly modified in order to account for the PSL treatment of 
the vertical boundaries. The main steps of the modified algorithm may be summarized as follows: 

1. solution of the u,-momentum equation over the whole computational domain. 
2. determination of the u 1  velocity within the PSL, by applying continuity to the pressure 

3. solution of the ul-momentum equation over the elliptic region only 
4. solution of the pressure correction equation over the elliptic region 
5. correction of the velocity field and updating of pressure. 

domains 

RESULTS AND DISCUSSION 

Numerical tests are conducted to evaluate the performance of the multi-grid method and to 
determine the relative computational efficiency of PSL and its influence upon the solution. In 
addition the overall accuracy of the numerical algorithm is compared with previously published 
work.6 

Multi-grid testing 

The excellent convergence performance of the multi-grid method when applied to elliptic 
equations with uniform coefficients and Dirichlet boundary conditions is well known.4 By 
contrast, there is some uncertainty when coefficients are anisotropic and Neumann boundary 
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conditions are present. Previous work in this area has met only moderate success,16 or conditions 
were artificially o~ersimplified.~ 

For preliminary testing of the version of the multi-grid method developed in the present work, 
a mesh of 96 x 96 corresponding to the finest level is used. A typical iterative cycle towards the 
solution of the cavity flow problem with Reynolds number equal to 1000 is used for comparisons 
among 1 -(single-grid), 2- and 3-level methods. The convergence criterion followed is 

where 1 1  rF I( and 1 1  r: 11 are the Euclidean norms of the residual of the pressure correction equation 
at iteration level N and at the beginning of the iterative process, respectively, and yp = 0.05. 

The convergence performance of the multi-grid method as compared to that of a single-grid 
technique is shown in Figure 4, where one work unit is defined as a full iteration of the alternative 
direction line relaxation scheme on the finest level. The 3-level multi-grid method requires only 
5.1 25 work units to attain convergence, whereas the single-grid method requires 24 units. 

The convergence rate of the multi-grid method, as defined by Brandt,4 is given by 

where W is the number of work units required to attain IIrFII. The convergence rate of the 
3-level multi-grid method for the case depicted in Figure 4 is found to be 0.56. This rate of 
convergence is however, not constant but varies from cycle and from case to case (i.e. Reynolds 
number and grid size), and for the cases examined it takes values between 0.5 and 0.85. 

The overall computational performance of the multi-grid algorithm, as compared to that of 
a single-grid method, is critically evaluated for a series of test cases using meshes of 24 x 24, 

O.1E-02 I I I I I I I I I I I I I I I I I I J I I I I I  

3 A 1 - LEVEL 

t 
IY 

P 
0.1E-03 

0.0 5.0 10.0 15.0 20.0 25.0 

WORK UNITS 

Figure 4. Multi-grid behaviour, for a single cycle of the cavity flow problem. Re = 1000, grid = 96 x 96 
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Table I. Multi-grid computational savings for the 
solution of the cavity flow problem 

Percentage saving 

Re 
Grid size 100 1000 10,000 

24 x 24 4.2 4.4 5.4 
48 x 48 40.5 31.8 30.4 
12 x 12 59.4 52.2 50.2 
96 x 96 69.1 64.9 62.6 

48 x 48, 72 x 72 and 96 x 96, corresponding to the finest level. Solutions to the cavity flow 
problem are obtained for Reynolds numbers of 100, 1000 and 10,000. 

The percentage savings in computational effort obtained by the use of a 3-level multi-grid 
method over the use of a single-grid method are shown in Table I. 

It can be seen that for a 24 x 24 mesh, the multi-grid computational savings are relatively 
small (4-5 per cent). When finer meshes are employed, the savings are increased, reaching a 
maximum of 69.1 per cent for a 96 x 96 mesh and a Reynolds number of 100. 

Trial runs conducted using 4 and 5 levels did not indicate any appreciable reduction in the 
computational effort required by the 3-level multi-grid technique. 
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Table 11. Computer time required for the solution 
of the lid-driven cavity flow for Re = 100 

Grid CPU-IBM 3081 (s) 

18 x 18 16.3 1 
24 x 18 (fully elliptic) 27.03 
24 x 18 (PSL) 17.35 

computational effort compared to the 18 x 18 mesh solution, as shown in Table 11. Using the 
same type of discretization the PSL approach yields identical results with the 24 x 18 fully elliptic 
solution, requiring however 36 per cent less computational effort (Table 11). 

Figure 6 presents the vertical velocity profile along the centreline in the x, direction calculated 
using a 24 x 18 mesh with and without PSL, and the 129 x 129 mesh solution reported in 
Reference 6. It can be seen that the three sets of results are almost identical. 

The validity of the PSL approach is also examined for higher Reynolds number flows. Figure 7 
provides a comparison of the results obtained within the PSL region for Re = 400, using a 
24 x 18 mesh with and without PSL, and a 64 x 64 fine grid solution. It can be seen that in 
spite of the fact that the results obtained using the PSL approach do not compare very well 
with the fine grid predictions, they are almost identical with the 24 x 18 fully elliptic solution. 
This indicates that the error in the PSL solution is not caused by the assumptions embodied in the 
PSL treatment of the near-wall flow, but is due to the inherent coarseness of the 24 x 18 mesh. 

The results obtained for a Re = 1000 case are depicted in Figure 8. They show that the PSL 
prediction deviates even from the 24 x 18 fully elliptic solution. The reason may be found in the 
fact that for convection dominated flows (high Reynolds number) the parabolic sublayer, if its 
existence is assumed, should be confined to very thin regions by the boundary walls. Having in 
mind that for high Reynolds numbers, relatively fine grids are required to accurately predict the 
flow, it is expected that the gains of the PSL treatment will be marginal. 

Accuracy of the algorithm 

The overall accuracy of the numerical scheme and the dependence of the solution on the grid 
size, are examined by solving the cavity flow problem, using meshes of 18 x 18 to 96 x 96, for 
Reynolds numbers of 400 and 1000. All computations are performed using an E-factor of 5, 
since it was found to give the highest convergence rate for the solution procedure. 
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Figure 6. Vertical velocity profile along the x,-centreline for RK = 100 
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Figure 8. Vertical velocity profile in the PSL region for Re = 1000 

The numerical simulation of the flows for R e  3 400 imposes a considerable computational 
effort, since the mesh density required to yield accurate solutions is increased with increasing 
Re. This mesh refinement is required to reduce the effect of artificial diffusion," which increases 
monotonically with the Reynolds number, and to describe accurately the steep velocity gradients 
present in the flow. This particular aspect is illustrated in Figure 9, where the horizontal and 
vertical velocity profiles along the x2 and x1 centrelines are plotted for Re = 400. I t  can be seen 
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Figure 9. Horizontal (a) and vertical (b) velocity profiles along the x2 and x, centrelines, respectively, for Re = 400 

Figure 10. Flow prediction for Re = 400 on a 64 x 64 mesh 

that for such a case, even a 36 x 36 mesh is not adequate to accurately predict the flow. The 
use of a 64 x 64 grid, howcvcr, yields results that are in very good agreement with the results 
reported in Reference 6. 

The predicted flow field for Re = 400 is shown in Figure 10. The primary vortex centre has 



INCOMPRESSIBLE FLUID FLOW EQUATIONS 569 

CENTERLINE VELOCITY - RE=1000 

A MESH:64*64 - MESH:96*96 L 
9 cI GHIA ET AL. MESH:129*129 V 0.6 

-] 0.2 
6 
k- 0.0 
Z 0 

g -0.2 
H 

K n -0.4 

' f  -0.6 

CENTERLINE VELOCITY - RE=1000 

A MESH:64*64 
MESH:96*96 
GHIA ET AL. MESH:129*129 

L - 
9 
0 0.6 

el 0.4 
> 

0.2 

6 0.0 
3 

u 
M 

k -0.2 

> -0.4 
B 

-0.6 

P I  I I I I I 
I 1 

0.2 0.4 

Figure 11. Horizontal (a) and vertical (b) velocity profiles along the x2 and x,  centrelines, respectively, for Re = 1000 

moved towards the geometric centre of the cavity as compared with the R e  = 100 case (Figure 5), 
owing to the relative reduction of the viscous stresses resulting from an increase in the Reynolds 
number. 

For the Re = 1000 case, a 96 x 96 mesh produces results of comparable accuracy to those 
reported by Ghia et as shown in Figure 1 1 .  As the convective terms become more dominant, 
the primary vortex centre moves further towards the geometric centre of the cavity (Figure 12). 
The secondary recirculating eddies at the bottom corners of the cavity become slightly stronger 
when compared to the Re = 400 eddies. 

The behaviour of the primary vortex centre as a function of the Reynolds number is illustrated 
in Figure 13. The vortex centre moves towards the geometric centre of the cavity as the Reynolds 
number increases and the viscous forces become less dominant. The primary vortex locations 
predicted by the SIMPLEC-MG scheme are in excellent agreement with the results reported in 
Reference 6 (Table 111). 

Table 111. Location of primary vortex centre 

Re = 100 R e  = 400 Re = 1000 

SIMPLEC-MG Reference SIMPLEC-MG Reference SIMPLEC-MG Reference 
6 6 6 

XI 0.6 14 0.6 172 0.555 0.5547 053 1 0.53 13 
0.732 0.1344 0.614 0.6055 0.57 1 0.5625 x2 
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Figure 12. Flow prediction for Re = 1000 on a 96 x 96 grid 
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Figure 13. Effect of Reynolds number on location of primary vortex centre 
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CONCLUDING REMARKS 

The proposed scheme, which combines a consistent formulation with a three-level multi-grid 
solver for the pressure correction equation, leads to substantial computational savings when 
compared to single-grid methods. The alternate direction line relaxation technique used in the 
smoothing process of the multi-grid solver was found to be very effective in dealing with the high 
anisotropy of the coefficients. 

The PSL approach shows a reasonable performance, considering its u priori limitations for 
recirculating flows. Its application, however, requires prior estimate of the boundary layer region; 
the PSL when used in the elliptic region leads to gross inaccuracies. 
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NOMENCLATURE 

area of control volume face 
discretization coefficient 
constant part of linearized source term in the finite difference equations 
time step multiple 
pressure 
prolongation operator 
best estimate of pressure 
pressure correction 
restriction operator 
Reynolds number based on the top moving wall. 
Euclidean norm of the residual of the pressure correction equation 
variable dependent part of linearized source term 
time 
velocity components 
velocity based on P* 
velocity corrections 
number of work units 
Cartesian co-ordinates 

underrelaxation factor 
residual reduction factor for the pressure correction equation 
time step 
reference time interval 
volume of the control domain 
convergence rate 
general dependent variable 
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Subscripts 

E, N, P, S, W grid points 
e, n, s, w control volume faces 
k grid level 
nb neighbour grid points 

Superscripts 

N iteration level 
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